Modified Tikhonov regularization method for the Cauchy problem of the Helmholtz equation

نویسندگان

  • H. H. Qin
  • T. Wei
  • R. Shi
چکیده

In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green's formulation, the problem can be transformed into a moment problem. Then we propose a modified Tikhonov regularization algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimation and convergence analysis have been given. Finally, we present numerical results for several examples and show the effectiveness of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spectral Regularization Method for a Cauchy Problem of the Modified Helmholtz Equation

The Cauchy problem for Helmholtz equation arises from inverse scattering problems. Specific backgrounds can be seen in the existing literature; we can refer to 1–6 and so forth. A number of numerical methods for stabilizing this problem are developed. Several boundary element methods combined with iterative, conjugate gradient, Tikhonov regularization, and singular value decomposition methods a...

متن کامل

Comparison of regularization methods for solving the Cauchy problem associated with the Helmholtz equation

In this paper, several boundary element regularization methods, such as iterative, conjugate gradient, Tikhonov regularization and singular value decomposition methods, for solving the Cauchy problem associated to the Helmholtz equation are developed and compared. Regularizing stopping criteria are developed and the convergence, as well as the stability, of the numerical methods proposed are an...

متن کامل

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

The Tikhonov Regularization Method in Hilbert Scales for Determining the Unknown Source for the Modified Helmholtz Equation

In this paper, we consider an unknown source problem for the modified Helmholtz equation. The Tikhonov regularization method in Hilbert scales is extended to deal with ill-posedness of the problem. An a priori strategy and an a posteriori choice rule have been present to obtain the regularization parameter and corresponding error estimates have been obtained. The smoothness parameter and the a ...

متن کامل

Tikhonov Regularization by a Reproducing Kernel Hilbert Space for the Cauchy Problem for an Elliptic Equation Tikhonov Regularization by a Reproducing Kernel Hilbert Space for the Cauchy Problem for an Elliptic Equation

We propose a discretized Tikhonov regularization for a Cauchy problem for an elliptic equation by a reproducing kernel Hilbert space. We prove the convergence of discretized regularized solutions to an exact solution. Our numerical results demonstrate that our method can stably reconstruct solutions to the Cauchy problems even in severe cases of geometric configurations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008